
B D∗ D

v ∼v′ v′

l
νl π

q s

d

g

u, c, t

W

d
u

u
d

FeynDiagram
Version 2.6

Tutorial

by Bill Dimm

bdimm@feyndiagram.com

+
p

p-k p-k

p
ν µ

k k

This software may be obtained from http://feyndiagram.com

This software and manual are copyright c© 1993, 2000, 2003 by Bill Dimm. They may be freely distributed
as long as no fee beyond a reasonable copying fee is charged.



Contents

Introduction 1

Vertices 2

Lines 3

Blobs 5

Text 6

Manipulations with xy 8

Coordinate Systems 10

Adjusting Parameters 11

Index 15



To users of previous versions of FeynDiagram: There is an incompatibility between version 2.1 and
the versions that came before it. As of version 2.1, all true() functions have been changed to settrue() and
false() has been changed to setfalse(). This was done because true and false have become reserved
words in the ANSI C++ standard.

Introduction

FeynDiagram (pronounced “Fine Diagram” of course) is a set of C++ objects which allow you to easily
produce high quality Feynman diagrams by writing a short C++ program to describe the diagram. Output
is in PostScript* which can be printed on a laser printer or viewed with a program such as ghostscript(gs)†.
This manual gives a brief description of FeynDiagram with examples. Prior knowledge of C++ is not
needed, but familiarity with C is assumed. Even if you do not know C, you ought to be able to achieve a
reasonable understanding of FeynDiagram by following the examples. All of the example programs in this
manual were included with the software.

The “largest” object is a page, which describes one page of output. Each page may have several
Feynman diagrams on it, which are represented by a class called FeynDiagram. Each FeynDiagram contains
lines, vertices, text, etc. To specify the positions of these objects, each FeynDiagram has its own coordinate
system with points being denoted by objects called xy. An example will help:

Program 1

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 xy e1(-10,5), e2(-10,-5), e3(10,5), e4(10,-5);

7 vertex dot v1(fd,-5,0), v2(fd,5,0);

8 line plain f1(fd,e1,v1);

9 line plain f2(fd,v1,e2);

10 line wiggle photon(fd,v1,v2);

11 line plain f3(fd,v2,e3), f4(fd,e4,v2);

12 pg.output();

13 return 0;

14 }

* PostScript is a registered trademark of Adobe Systems Inc.
† by Aladdin Enterprises

1



On line 1 (these line numbers are not part of the C++ program), we include “FeynDiagram/fd.h”
which defines all of the classes for the FeynDiagram package. On line 4 we define a page called pg. Line
5 then attaches a FeynDiagram onto pg – we will only put this one Feynman diagram on the page. On
line 6 we define four objects, e1...e4, of type xy. An xy is simply a two component vector (the rather brief
name xy was chosen because these objects occur all over the place, as you will see). The xy’s defined on
line 6 will be the starting and ending points of the external lines. The arguments in parenthesis are simply
cartesian coordinates. On line 7 we define the two vertices. These are attached to fd and have the cartesian
coordinates given by their second and third arguments. Notice that all objects that make up a Feynman
diagram have a FeynDiagram as their first argument so that they are automatically attached to the right
diagram. Other objects such as xy and page do not have a FeynDiagram as their first argument.

On line 8 we define an incoming fermion line. It is an incoming “fermion” because it starts at e1, an
external point, and ends at v1 which is a vertex. In contrast, on line 9 we define an incoming “anti-fermion”
– the second argument (where it comes from) is a vertex. You might be thinking that lines 8 and 9 are
inconsistent since their second and third arguments are of different types – one is an xy and the other is a
vertex dot. This is okay because FeynDiagram has rules for converting a vertex dot (or any other type of
vertex) into an xy. So, at any place where the coordinates of a point are needed, a vertex may be substituted
(a vertex, however, is more than just a point since it produces output on the page). On line 10 we define a
photon line which connects the two vertices. On line 11 we define the outgoing fermion and anti-fermion.
Then line 12 tells pg to output itself (actually, this will output all of the pages in the program – you won’t
be able to use your output in other programs like TEX* if you use more than one page). Since we didn’t
tell it where the output should go (we didn’t give an argument to pg.output()), it is sent to stdout. If we
don’t redirect the output of this program when we run it, stdout will be the screen – quite a mess! If we
called the compiled program “fig1”, we might execute it as “fig1 | lpr” to send it to the printer (or perhaps
“fig1 | lp -T PS” depending on your Unix system), or “fig1 >fig1.ps” to create a PostScript file which we
could view on the screen. If you are on a Unix computer, you can get instructions on how to compile your
program and other information about your local version of FeynDiagram by typing “man feyndiagram”.

If you haven’t used C++ before, some of this may seem a little strange. Lines 4 through 11 are
definitions. In C you define things like “double x;” and “int i;”. In C++ you can create your own types
(in our case classes), which is what page, FeynDiagram, xy, vertex dot, line plain and line wiggle are. When
you define objects, you give them initial values by putting arguments in parenthesis after the variable name
(in C you do something like “int i=1;”). C++ classes are similar to structures in C. One of the differences
from C is that in addition to having members which are variables, you can also have members which are
functions. An example of this is shown on line 12 where we invoke the output() function which is a member
of the page class. Note that some C++ compilers require the filename for your source to end in “.C” (upper
case).

Throughout, all angles are in degrees. Also, unless stated otherwise, all lengths, locations, etc. are
measured in the coordinate system of the FeynDiagram involved.

Vertices

There are several different vertex types supported by FeynDiagram. Samples of the output from each
are shown below.

vertex_dot

vertex_cross

vertex_circlecross

vertex_box

Any of these may be defined like:
vertex dot v(fd,xy);
vertex dot v(fd,x,y);

Where fd is a FeynDiagram, xy is an xy, x and y are double, and v is the name of the variable you are
defining. xy or x and y specify the position of the vertex in the coordinate system of fd. C++, like ANSI C
with prototypes, knows the type of the arguments, so if you give an integer for x or y, it will automatically
be converted to a double. Additionally, vertex cross, vertex circlecross, and vertex box have an optional
argument which gives the orientation of the vertex. For example:

* TEX is a trademark of the American Mathematical Society

2



vertex circlecross v(fd,x,y,angle);
Where angle is a double which gives the angle in degrees. The default value is 0◦. There is another type of
vertex not listed above. It is vertex, and it produces no output on the printed page (generally, an xy can be
used in place of a vertex since a vertex does nothing more than keep track of a location).

The appearance of the vertices may be adjusted by changing their “parameters”. This may be done for
a single vertex or all the vertices in a diagram simultaneously. See the section titled “Adjusting Parameters”
for more information. The parameters for all vertices are:

radius (d) - the radius of the vertex
thickness (d) - the thickness of lines used to construct the vertex

Lines

The various lines (propagators) supported by FeynDiagram are shown below.
line_plain

line_doubleplain

line_wiggle

line_zigzag

line_spring

All of these lines may have an arrow attached to them, but only line plain and line doubleplain have
arrows by default. All lines are defined like:

line plain lin(fd,begin point,end point);
Where fd is a FeynDiagram, and begin point and end point are of type xy. A line follows some specified
curve. By default, this curve is a straight line connecting the given points. You can change the curve to
an arc by using the arcthru member function to specify a third point. This is done in the example below
on line 10 where the first photon line is made to follow an arc through the point arcpt which is defined on
line 6. On line 12 arcthru is used with x and y values passed as arguments rather than an xy. The curve
associated with a line is parameterized by a variable which takes on values between 0 and 1. You can find a
point on the curve or the tangent vector at a point on the curve. An example of this is given in the section
titled “Manipulations with xy.”

Program 2

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 xy e1(-10,0), e2(10,0), arcpt(0,4);

7 vertex circlecross v1(fd,-4,0), v2(fd,4,0);

8 line plain f1(fd,e1,v1), f2(fd,v1,v2), f3(fd,v2,e2);

9 line wiggle photon1(fd,v1,v2), photon2(fd,v1,v2);

10 photon1.arcthru(arcpt);

11 photon1.dashon.settrue();

12 photon2.arcthru(0,-2);

13 photon2.width.scale(0.7);

14 pg.output();

15 return 0;

16 }

3



On line 11 in the example above, the dashon parameter (described below) is used to turn dashing on for
photon1. The width parameter is used on photon2 on line 13 to make the wiggles smaller than the default
by a factor of 0.7.

The dashes in the dashed lines have rounded ends. When describing the length of dashes, the endcap
used to give the rounded edge is not included in the length of the dash. So, to get a dotted line you can
set the dsratio (described below) to zero, which tells it that the dashes should have zero length. But, the
endcaps will still be drawn, giving a dotted line.

To draw a tadpole loop, your line will have the same beginning and ending point. But, this isn’t enough
information – FeynDiagram doesn’t know what direction the line goes in (ie. which way should the arrow
point if there is one). By default, it assumes that the tadpole goes in the clockwise direction. To make it
go counterclockwise, pass an additional argument of 1 to arcthru() as shown below on line 10. Notice that
on line 13 we make the the ghost line 1.8 times thicker than a normal line. This is generally a good idea for
dotted lines so that they aren’t too light. On line 7, the xy(-5,0) constructs a temporary object of type
xy.

Program 3

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 vertex dot vtx(fd,0,0);

7 line spring gluon(fd,xy(-5,0),vtx);

8 gluon.arrowon.settrue();

9 line plain ghost(fd,vtx,vtx);

10 ghost.arcthru(3,0,1);

11 ghost.dashon.settrue();

12 ghost.dsratio.set(0);

13 ghost.thickness.scale(1.8);

14 pg.output();

15 return 0;

16 }

Lines which have a width parameter can be flipped by making the width negative. This is shown in
the example below. Also, it is sometimes desirable to make a line look as if it passes over another line. The
ontop member function handles this as shown in the example below. The argument to ontop is an integer
in the range [1,9] which tells FeynDiagram how to order the lines (ie. which lines go on top of which other
lines). For example, if there were three lines which crossed, you would use ontop(1) for one of them and
ontop(2) for another. You wouldn’t call ontop for the third line (which goes on the bottom).

Program 4

1 #include <FeynDiagram/fd.h>

4



2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 line spring gluon(fd,xy(-10,0),xy(-2,0));

7 gluon.arcthru(-6,3);

8 line spring gluonflip(fd,xy(2,0),xy(10,0));

9 gluonflip.arcthru(6,3);

10 gluonflip.width.scale(-1);

11 line plain fermion(fd,xy(-6,0),xy(-2,3));

12 fermion.ontop(1);

13 pg.output();

14 return 0;

15 }

All lines have the following parameters:
thickness (d) - the thickness of the line
dashon (b) - whether or not to make the line dashed
spacelen (d) - length of the space between dashes (if there are any)
dsratio (d) - ratio of length of dash to the length of space between dashes
arrowon (b) - whether or not to put an arrow on the line
arrowlen (d) - length of the arrow as shown
arrowangle (d) - angle shown, in degrees
arrowposition (d) - location along curve for arrow, between 0 and 1

arrowlen

arrowangle

line doubleplain has the additional parameter:
lineseparation (d) - distance between centers of two lines

line zigzag, line wiggle, and line spring have the additional parameters:
width (d) - proportional to the width from center of the curve as shown below
lwratio (d) - ratio of “len” in figure below (this will stretch) to width

line wiggle has the additional parameter:
fract (d) - ratio of “F” to “len” in the figure below

F

width

len

line spring has the additional parameters:
threeD (b) - whether or not to make it look three dimensional
threeDgap (d) - size of gap used to make it look 3-D
fract1 (d) - ratio of length of little arc to length of big arc

Blobs

A blob is an ellipse which may be shaded. To create a blob, do:
blob bl(fd,center,rx,ry);

Where fd is the FeynDiagram which it is attached to, center is an xy which specifies the center of the
ellipse, and rx and ry are double’s which give the radii in the x and y directions respectively. The blob will
be empty unless you add shading. Let’s look at an example:

5



Program 5

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 xy e1(-10,0), e2(10,0);

7 blob b(fd,xy(0,0),3,2);

8 b.addshading lines(45);

9 b.addshading lines(-45);

10 vertex dot v1(fd,b.location(180)), v2(fd,b.location(0));

11 line zigzag l1(fd,e1,v1), l2(fd,v2,e2);

12 pg.output();

13 return 0;

14 }

A blob is defined on line 7. On lines 8 and 9 the blob is shaded with lines along 45 and -45 degrees
respectively. If we call the addshading lines() or addshading dots() member function without telling
it what angle to use, it will use the default value. Line 10 defines two vertices which lie on the ellipse of
the blob b. This is done by using the blob member function location(), which returns an xy representing a
point on the ellipse at an angle given by the argument to location().
blob’s have the parameter:

thickness (d) - the thickness of the outline
Shading works by attaching a shading object to the blob each time there is a call to a blob’s member

function to add shading. These shading objects also have parameters.
All shading objects have the parameter:

angle - angle for the shading. Normally set by addshading lines() etc.
Parameters for shading lines:

thickness (d) - thickness of lines
spacing (d) - distance between lines

Parameters for shading dots:
radius (d) - radius of dots
spacing (d) - distance between centers of dots

Text

FeynDiagram takes text strings in a format similar to TEX. Unlike TEX, you do not need to enclose
mathematical objects in $’s, and spaces are translated without any modification. To produce a subscript,
preceed the character with an “ ” (underscore). To produce a superscript, preceed the character with a
“ˆ”. To superscript or subscript multiple characters, group them in braces “{}”. To override the meaning
of special characters such as braces and underscores, preceed them with a “\” (backslash). Note that the
C++ compiler interprets backslashes which occur in constant text strings, so you must replace all of the
backslashes you would normally type by two backslashes in your C++ program. To put a line over some text
do \overline{text}; for a tilde do \widetilde{text}; for a tilde with a bar under it do \tildebar{text};
and for an arrow do \overrightarrow{text}. Also note that the character ’ produces an apostrophe,

6



while \prime produces a prime symbol. You can change fonts in the middle of a string of text by doing
\font{fontname}{text}. FeynDiagram understands the following control sequences:

\alpha α
\beta β
\gamma γ
\delta δ
\varepsilon ε
\zeta ζ
\eta η
\theta θ
\vartheta ϑ
\iota ι
\kappa κ
\lambda λ
\mu µ
\nu ν
\xi ξ
\pi π
\rho ρ
\sigma σ
\varsigma ς
\tau τ
\upsilon υ
\phi φ

\varphi ϕ
\chi χ
\psi ψ
\omega ω
\Gamma Γ
\Delta ∆
\Theta Θ
\Lambda Λ
\Xi Ξ
\Pi Π
\Sigma Σ
\Upsilon ϒ
\Phi Φ
\Psi Ψ
\Omega Ω
\Re ℜ
\Im ℑ
\partial ∂
\infty ∞
\nabla ∇
\equiv ≡
\sim ∼

\approx ≈
\conj ≅
\propto ∝
\perp ⊥
\cdot ⋅
\times ×
\ast ∗
\bullet •
\leftarrow ←
\Leftarrow ⇐
\rightarrow →
\Rightarrow ⇒
\leftrightarrow ↔
\Leftrightarrow ⇔
\uparrow ↑
\Uparrow ⇑
\downarrow ↓
\Downarrow ⇓
\langle 〈
\rangle 〉
\vert |

Objects of type text are defined:
text tx(fd,str,position,angle);

Where fd is the FeynDiagram which it is attached to, and str is a text string of type (char *). position is
an xy giving the position of the point shown below, and angle is a double. angle is optional, and gives the
orientation of the text. It defaults to 0◦.

Tagposition

There is another syntax for the text definition that allows special positioning:
text tx(fd,str,position,xfract,yfract,angle);

This allows the position argument to refer to a different point in the text than the one shown in the diagram
above. FeynDiagram will find the boundary of a box around the text, and then use xfract and yfract to
determine which point position refers to. For example, with xfract and yfract both set to 0.5, position
will refer to the center of the box which encloses the text. On line 11 in the example below, xfract and
yfract are set to 0.5 and 1.0 respectively. In that case, position refers to the location of the center of the
top of the text.
Now an example:

Program 6

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 xy pos1(-5,2);

7 text t1(fd,"Simple Text",pos1);

7



8 text t2(fd,"Large Text",xy(-5,0));

9 t2.fontsize.scale(1.5);

10 vertex dot v(fd,-5,-2);

11 text t3(fd,"F^{\\mu\\nu} {a 1}",v + xy(0,-.5),0.5,1);

12 text t4(fd,"Rotated Helvetica!",xy(3,2),-40);

13 t4.fontname.set("Helvetica");

14 text t5(fd,"Change \\font{Courier}{font}",xy(-5,-6));

15 text t6(fd,"\\tildebar{c} \\overrightarrow{p}",xy(3,-5));

16 pg.output();

17 return 0;

18 }
Simple Text

Large Text

Fµν
a1

Rotated Helvetica!

Change font
c p

Line 6 defines pos1 which is used to locate the text object defined on line 7. On line 8 another text
object is created. This time, its position is given by “xy(-5,0)” which constructs a temporary object of
type xy. The fontsize parameter is used on line 9 to make the text 1.5 times its normal size. On line 10
a vertex dot is created named v. We then position text relative to this object on line 11. The meaning of
“v + xy(0,-.5)” on this line is the following. v is converted to type xy which specifies the position of the
vertex. Then, this position has a vector of length 0.5, pointing in the -y direction, added to it. This gives
the position of the center of the top of the text. On line 12 we create text using an angle of −40◦ instead of
the default. On line 13 the fontname parameter is changed so that the “Helvetica” font is used instead of
the default font which is “Times-Roman”.
Parameters for text:

fontname (s) - name of the PostScript font to use
fontsize (d) - size of the font

Some common PostScript fonts:

Helvetica-Bold NewCenturySchlbk-Roman
Bookman-LightAvantGarde-Book

Palatino-Roman
Helvetica

Courier
Times-Roman

Manipulations with xy

An xy is a representation of a two dimensional vector. As you saw in the example for the section titled
“Text,” it is possible to add objects of type xy just as you add vectors. You can also multiply them by
scalars (doubles). The class xy has the following member functions:

double x() - return x component

8



double y() - return y component
double len() - length of the vector
double angle() - polar angle of the vector

xy perp() - return a unit vector which is perpendicular to the xy
xy& rotate(angle) - rotate the xy by angle and return a reference to itself

There are two unit vectors perpendicular to any (non-null) vector in two dimensions. The perp()
member function returns the vector which is to the left as we look in the direction of the original vector. So,
the cross product: vect × vect.perp() is always out of the page. There is an additional function (not a
member function of xy) called polar(r,theta) which takes double’s for r and theta, and returns an xy.
Example:

Program 7

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 vertex dot v1(fd,-3,4), v2(fd,polar(5,-30));

7 line wiggle L(fd,v1,v2);

8 xy midpt, arcpt;

9 midpt = 0.5 * (v1 + v2);

10 arcpt = midpt + 4.0 * (v2-v1).perp();

11 L.arcthru(arcpt);

12 xy refpt, tanvect;

13 refpt = L.curve->f(0.6);

14 tanvect = L.curve->tang(0.6);

15 refpt += 0.8 * tanvect.perp();

16 text txt(fd,"k 1",refpt,tanvect.angle());

17 pg.output();

18 return 0;

19 }

k
1

The polar() function is used on line 6 to specify the position of the second vertex in polar coordinates.
On line 9 we set midpt to the midpoint of the two vertices. We then compute the point to draw the arc
through on line 10 by adding a vector which is perpendicular to the line connecting the two vertices. On
line 13 we use the curve associated with the photon line to find a point which is 60% of the way along the
curve. Actually, the argument to L.curve->f() is the value of the curve parameter, but for straight lines

9



and arcs this is proportional to the distance along the curve. On line 14 we find the unit tangent vector to
the curve at the same point. Our goal is to label the photon line, so we need the location of a point which
is slightly displaced from the line. Thus, we add a vector to refpt on line 15 which is perpendicular to the
tangent to the curve. Note that in lines 8 and 12 we define xy’s without giving them values. If we tried to
use them in a calculation before giving them values, an error message would be generated.

Coordinate Systems

So far, when we have created a FeynDiagram, we have always done so using “FeynDiagram fd(pg);”.
This gives us a Feynman diagram of the default size with the default coordinate system. The default for the
x coordinate is to have -10 be one inch from the left side of the page, and +10 be one inch from the right
side. The default y coordinate has its zero at the center of the page. We can also define a FeynDiagram by
doing:

FeynDiagram fd(pg,xleft in,xright in,yref in);
Where pg is a page, and xleft in, xright in, and yref in are double’s. xleft in and xright in tell where
on the page (in inches relative to the left edge) the x coordinate has values -10 and 10 respectively. yref in
is the height from the bottom of the page (in inches) where the y coordinate is zero.

Note that FeynDiagram does not limit where you can put vertices, lines, etc. The x coordinates -10
and 10 are reference points only. In the example below, we will construct two Feynman diagrams on the
same page.

Program 8

1 #include <FeynDiagram/fd.h>

2 main()

3 {
4 page pg;

5 xy pt[6];

6 pt[0] = xy(-10,5);

7 pt[1] = xy(-10,-5);

8 pt[2] = -pt[1];

9 pt[3] = -pt[0];

10 pt[4] = xy(-5,0);

11 pt[5] = -pt[4];

12 FeynDiagram fdA(pg,1,4,4);

13 line plain fA1(fdA,pt[0],pt[4]), fA2(fdA,pt[4],pt[1]);

14 line plain fA3(fdA,pt[5],pt[2]), fA4(fdA,pt[3],pt[5]);

15 line wiggle pA(fdA,pt[4],pt[5]);

16 int i;

17 for (i = 0; i < 6; ++i)

18 {
19 pt[i].rotate(90);

20 pt[i] = xy(pt[i].x(),-pt[i].y());

10



21 }

22 FeynDiagram fdB(pg,4.5,6.2,4);

23 line plain fB1(fdB,pt[0],pt[4]), fB2(fdB,pt[4],pt[1]);

24 line plain fB3(fdB,pt[5],pt[2]), fB4(fdB,pt[3],pt[5]);

25 line wiggle pB(fdB,pt[4],pt[5]);

26 pg.output();

27 return 0;

28 }

First, the diagram on the left is drawn. On lines 6 through 9 we give the location of the endpoints of
the lines which are stored in an array of xy’s. On lines 10 and 11 we set the location of the vertices (although
no actual vertex dots are drawn in this diagram). On line 12 we define the FeynDiagram called fdA. We
have chosen the left edge to be at 1 inch, and the right edge at 4 inches. The contents of the diagram are
constructed on lines 13 through 15.

To draw the diagram on the right, we rotate all of the points in the first diagram by 90◦ (line 19),
and then flip about the x-axis (line 20). On line 22 we define the second FeynDiagram. This one has its
coordinates mapped onto a smaller region of the page. Notice that everything in the diagram has been scaled
down appropriately. Lines 23 through 25 are identical to 13 through 15 except that the variable names have
been changed.

When you want to draw multiple diagrams on a page, it is highly recommended that you use one
FeynDiagram for each of the diagrams. That way, each has its own coordinate system, so it can be moved
or resized by changing only one line in your program. Also, the default settings for the parameters assume
that your (single) diagram goes from roughly -10 to +10 in both the x and y directions in the FeynDiagram’s
coordinate system. So, if you cram several diagrams into this space, they will look funny. For example, the
wiggles in the photon lines will look too big (ie. have too few wiggles) because FeynDiagram assumed that
the lines would typically be longer than they are.

When debugging your Feynman diagram, you may find it useful to have a grid showing your coor-
dinate system with the diagram on it. If your FeynDiagram is called fd, you can do this by putting
fd.gridon.settrue() in your program. To turn grids on for all of the diagrams in your program, pick
any one diagram, and do fd.global gridon.settrue(), and this will turn the grid on for all of the dia-
grams (unless you explicitly turn them off). The grid will be just a little larger than your diagram. If you
want to change the range of the grid, use grid xmin, grid xmax, grid ymin, and grid ymax. For example,
fd.grid xmin.set(-5.5).

Sometimes, you will want to specify the size of something in terms of the actual size that it will be
printed. For example, if you had several diagrams on one page, you might want to set the size of the text
labels to be 0.2 inches regardless of the size of the individual diagram. Each FeynDiagram has a member
function inch2lencoord(len) which takes a length in inches, len, and returns the corresponding length in
terms of the systems of units for the FeynDiagram.

Adjusting Parameters

In previous sections, lists of parameters were given. These parameters have some default value which
you can modify. A parameter may have a parent, so if its value isn’t set it gets a value from the parent.
The letter in parenthesis following the parameter name tells what type the parameter is. (s) means that the
parameter is a string. You can use the set() member function to change the value of the string. (d) means

11



that the parameter is a double, which can be set using set() or scale(). The scale() member function
tells the parameter to multiply its parent’s value by the argument of scale() when it is asked for its value.
(b) means the parameter is a boolean. Rather than using set(), you use settrue() or setfalse() to set
its value.

When a diagram is drawn, FeynDiagram checks the values of the parameters for the vertices, lines,
etc. For example, when drawing a line wiggle defined by:

line wiggle ph(fd,startpt,endpt);
it checks the width parameter ph.width. If the width parameter has been set, it uses this value. If it
hasn’t been, it looks to the parent which is fd.line wiggle width. If this hasn’t been set either, it
proceeds to fd.line width which is set automatically by FeynDiagram. fd.line width controls the
default width of all the line wiggle’s, line zigzag’s, and line spring’s in the diagram as we see from the
chart below. So, to change the width of just ph, use ph.width.set() or ph.width.scale(). If you
want to change the width of all the line wiggle’s in the diagram whose widths aren’t explicitly set, use
fd.line wiggle width.set() or fd.line wiggle width.scale(). To change the width of all line wiggle’s,
line zigzag’s, and line spring’s in the diagram (whose widths aren’t explicitly set), use fd.line width.set().
Note that fd.line width.scale() cannot be used since fd.line width has no parent. When trying to find
the value of a parameter, FeynDiagram searches the chart below from left to right until it finds a value
that has been set. Parameters and their parents:

Similar for threeDgap and fract1
FeynDiagram::line_spring_threeDline_spring::threeD

Similar for dashon, spacelen, dsratio, arrowangle, and arrowposition
FeynDiagram::line_spring_thickness
FeynDiagram::line_doubleplain_thickness

line_spring::thickness
line_doubleplain::thickness

FeynDiagram::line_wiggle_thickness
FeynDiagram::line_zigzag::thicknessline_zigzag::thickness

line_wiggle::thickness
FeynDiagram::line_thickness

FeynDiagram::line_plain_thicknessline_plain::thickness

FeynDiagram::vertex_thickness
vertex_box::thickness
vertex_circlecross::thickness
vertex_cross::thickness

FeynDiagram::vertex_radius_large

FeynDiagram::vertex_radius_small

vertex_box::radius
vertex_circlecross::radius
vertex_cross::radius

vertex_dot::radius

line_plain::arrowon FeynDiagram::line_plain_arrowon
line_doubleplain::arrowon FeynDiagram::line_doubleplain_arrowon
line_wiggle::arrowon FeynDiagram::line_wiggle_arrowon
line_zigzag::arrowon FeynDiagram::line_zigzag_arrowon
line_spring::arrowon FeynDiagram::line_spring_arrowon

FeynDiagram::line_arrowon

line_doubleplain::arrowlen FeynDiagram::line_doubleplain_arrowlen
line_plain::arrowlen FeynDiagram::line_plain_arrowlen
line_wiggle::arrowlen FeynDiagram::line_wiggle_arrowlen
line_zigzag::arrowlen FeynDiagram::line_zigzag_arrowlen
line_spring::arrowlen FeynDiagram::line_spring_arrowlen

FeynDiagram::line_arrowlen

FeynDiagram::line_width

line_doubleplain::lineseparation FeynDiagram::line_doubleplain_lineseparation

Similar for lwratio
FeynDiagram::line_spring_widthline_spring::width
FeynDiagram::line_zigzag_widthline_zigzag::width
FeynDiagram::line_wiggle_widthline_wiggle::width

FeynDiagram::line_wiggle_fractline_wiggle::fract

FeynDiagram::shading_lines_angleshading_lines::angle

FeynDiagram::blob_thicknessblob::thickness

shading_dots::angle FeynDiagram::shading_dots_angle
Similar for thickness and spacing

Similar for radius and spacing

FeynDiagram::fontsizetext::fontsize

FeynDiagram::fontnametext::fontname

Now lets look at an example where we change the values of the parents of some of the parameters (we have
changed parameters for individual lines in previous examples):

Program 9

1 #include <FeynDiagram/fd.h>

12



2 main()

3 {
4 page pg;

5 FeynDiagram fd(pg);

6 fd.line plain arrowon.setfalse();

7 fd.line plain thickness.scale(3.0);

8 fd.vertex radius small.set(2*fd.vertex radius small.get());

9 xy e1(-10,5), e2(-10,-5), e3(10,5), e4(10,-5);

10 vertex dot v1(fd,-6,0), v2(fd,6,0), v3(fd,0,6), v4(fd,0,-6);

11 line plain L1(fd,e1,v1), L2(fd,e2,v1), L3(fd,e3,v2), L4(fd,e4,v2);

12 line plain L5(fd,v1,v2), L6(fd,v2,v1);

13 L5.arcthru(v3);

14 L6.arcthru(v4);

15 line plain L7(fd,v3,v4), L8(fd,v4,v3);

16 L7.arcthru(-2,0);

17 L8.arcthru(2,0);

18 pg.output();

19 return 0;

20 }

On line 6 we change the default so that all our line plain objects won’t have arrows. On line 7 we triple
the default thickness for the same objects. On line 8 we change the default radius used by our vertices by a
factor of 2. Notice that we had to use set() rather than scale() since fd.vertex radius small doesn’t
have a parent (look at the top line of the chart of parameters and their parents).

There is another parameter which is a member of FeynDiagram. This is scalefactor. Its parent is
FeynDiagram::defaultscalefactor, which is hidden so that you cannot modify it. scalefactor is used to scale
the default values for all quantities which measure length (eg. line thickness, line width, not line arrowangle).
You can use scalefactor.scale() to shrink or enlarge all such quantities for a FeynDiagram. This is useful
if you are drawing very complicated diagrams where you might want all features to be somewhat smaller than
normal. After changing FeynDiagram::scalefactor, you must call the member function updatedefaults()
for the FeynDiagram. This will cause the values of default parameters such as FeynDiagram::line width to
be recomputed using the new value of FeynDiagram::scalefactor.

You may want to change the default value of some parameters for all of the diagrams in your program.
To do this, you give FeynDiagram a function which it executes for each FeynDiagram which it creates. This
function is called after the default values of the parameters are set, so it can modify them. Note that you
must tell FeynDiagram about this function before a FeynDiagram is created for it to work. An example:

Program 10

1 #include <FeynDiagram/fd.h>

13



2 void adjust(FeynDiagram &fd, double scalefactor)

3 {
4 fd.line arrowon.settrue();

5 fd.line arrowposition.set(.25);

6 fd.line wiggle arrowposition.set(.5);

7 fd.line wiggle width.set(.7*scalefactor);

8 }

9 main()

10 {
11 page pg;

12 pg.adjustparams = adjust;

13 xy pt1(-7,4), pt2(0,0), pt3(-7,-4), pt4(8,0);

14 FeynDiagram fdA(pg,1,4,5.5);

15 line plain L1A(fdA,pt1,pt2), L2A(fdA,pt2,pt3);

16 line zigzag L3A(fdA,pt2,pt4);

17
18 FeynDiagram fdB(pg,4.5,7.5,5.5);

19 line plain L1B(fdB,pt1,pt2), L2B(fdB,pt2,pt3);

20 line wiggle L3B(fdB,pt2,pt4);

21 pg.output();

22 return 0;

23 }

On lines 2-8 we create a function which will adjust the parameters for an individual FeynDiagram. The
first argument for our function adjust is the diagram to adjust. This is passed by reference, so our modifi-
cations will remain in tact when the function exits (normally, C passes by value, so your function modifies a
copy of the object – the & in &fd tells it to pass by reference). The second argument, scalefactor should
multiply any parameter which measures a length, as in line 7 (this argument is produced by the parameter
scalefactor mentioned earlier). On line 4 we force all lines to have an arrow, and on line 5 we say that the
arrow should be positioned 25% of the way along the line. But, on line 6 we override this for all line wiggle’s.
This is because line arrowposition is the parent of line wiggle arrowposition, and when FeynDiagram ac-
cesses the arrowposition for a line wiggle the value is obtained from line wiggle arrowposition (since it is
set) without going to its parent. On line 12 we tell FeynDiagram to use our adjust function on all of the
diagrams (this will affect all diagrams on all pages).

Normally, when you make a FeynDiagram fit onto a smaller space on the page, all features are scaled
down. But, when FeynDiagram determines the default values for the parameters, it has minimum values
beyond which it won’t shrink things anymore. Typically, during photoreduction the lines in a figure will get
thinner by more than the amount you are reducing by. The default parameters have been chosen so that
diagrams should be able to survive a 50% reduction. If you want to be able to reduce things even more, you
can do pg.adjustparams = params4reduction. The function params4reduction will make the lines and
some other features somewhat thicker. It will also change the default font to a thicker font.

14



Index
(b) = boolean 12
(d) = double 11
(s) = string 11
addshading dots 6
addshading lines 6
adjustparams 14
angles 2
arcthru 3
arrowposition 5
arrows on lines 3, 13
backslash 6
blobs 5
C++ 1, 2
classes 2
compiling 2
complicated diagrams 13
control sequences 7
coordinate systems 10
curve 3
curve parameter 9
curve parameterization 3
dashing 4
debugging 11
dotted line 4
ellipse 5
FeynDiagram 1
flip a line 4
font 7, 8
font, default 8
fontsize 8
global gridon 11
grid 11
gridon 11
grid xmax 11
grid xmin 11
grid ymax 11
grid ymin 11
inch2lencoord 11
initial values 2
lines 3
line doubleplain 3
line plain 3

line spring 3
line wiggle 3
line zigzag 3
local version 2
member functions 2
member variables 2
multiple diagrams 10
ontop 4
output 2
page 1
parameter parent 11, 12, 13
parameter types 11
parameters 3, 11, 12
params4reduction 14
parent 11
perpendicular vector 9, 10
photoreduction 14
polar 9
PostScript 1, 2, 8
rotate xy 9, 11
scalefactor 13, 14
scaling 11, 14
shading 5
shading dots 6
shading lines 6
special positioning 7
stdout 2
subscript 6
superscript 6
tadpole 4
tangent vector 3, 10
temporary object 4, 8
TeX 2, 6
text 6
updatedefaults 13
vector 8
vertex 3
vertex box 2
vertex circlecross 2
vertex cross 2
vertex dot 2
vertices 2
xy 1, 2, 4, 8

15


